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B i Introduction

Because of the significant computational limitations of integer pro-
gramming algorithms for obtaining an optimal solution, there has been
considerable research in recent years on heuristic algorithms for efficiently
seeking very good solutions that are not guaranteed to be optimal. For ex-
ample, such algorithms have been developed by Reiter and Rice [10], Echols
and Cooper [1], Senju and Toyoda [12], Hillier [6,5], Roth [11], Kochenberger
McCarl, and Wyman [8], Ibaraki, Ohashi, and Mine [7], and Toyoda [14]. Al-
though their primary motivation was to provide an effective way of dealing
with the frequently encountered integer programming problems that are beyond
the computational capability of exact algorithms, heuristic algorithms also
can be very useful on smaller problems by providing an advanced starting solu-
tion to accelerate an exact algorithm. For example, the availability of an
advanced starting solution has been exploited very advantageously by the
authors in Hillier's Bound-and-Scan algorithm [4] and Faaland and Hillier's
Accelerated Bound-and-Scan algorithm [2].

Some of these heuristic algorithms are expressly designed for binary

(0-1) integer programming while others deal with the general integer linear

programming problem. The algorithms developed by Hillier [6,5] and extended




by Ibaraki et al [7] fall into the latter category. One of their distinc-
tive features is that the search for good integer solutions is focused in
the neighbcrhood of the optimal solution for the corresponding linear pro-
gramming problem (i.e., the original problem except for deleting integrality,
restrictions) obtained by the simplex method. Specifically, the following
three-phase approach is used. Phase 1 identifies a path leading from the
optimal linear programming solution into the interior of the feasible region
(when ignoring integrality restrictions). (Hillier originally proposed a
linear path and Ibaraki et al extended this to a piecewise linear path.)
In conceptual terms, Phase 2 then moves slowly along this path, using it as
a "home base' from which to search for a nearby feasible (integer) solution.
Phase 3 attempts to move from the feasible solution obtained to a succession
of better ones. The final solution obtained is the desired approximate solution.
One device for attempting to improve further ‘the quality of the approxi-
mate solution is to generate a number of distinct final solutions. The most
effective means that Hillier [6,5] found to accomplish this is to repeat Phase 2
and 3 by moving down the path in Phase 2 beyond the point at which the previous
Phase 2 solution had been found. He also found evidence to indicate that the
location of the Phase 2 solution relative to the constraints may have a strong
influence on the quality of the solution determined by Phase 3. That is, the
degree of maneuverability allowed by the Phase 2 solution seems to be an impor-
tant consideration. These two factors, substantial movement along the Phase 1
path and degree of maneuverability, indicate that the choice of a "home base"
path to follow into the feasible region in Phase 2 deserves careful attention.

The selection of this path is the subject of this paper.
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2. Notation

The problem under consideration is to choose X{sXpseee,X SO 85 to

n
(1) maximize 2 = I c¢.x,,
j=lj J H
|
subject to
n
(2) L oa,x, < b K ) e SBRR
=3 5 | s §
F 3) X, =10, i D D
4) xj integer f= 12 o n's

SOX 1yppceesX need not be an integer. Let x be the n-vector (xl,xz,...,xn),

6D

and let x be the optimal linear programming solution obtained by the simplex

method by neglecting the integer constraint (4). Define

{1

(5) B=1{j]|j<n'and Xy ) is a basic variable},

and let N be the number of elements of B. Given any x, let X denote the cor-

responding N-vector whose components are xj and that j € B. Finally, let

n

di(ﬁ) be the Euclidean distance from x to the hyperplane I aijxj = bi’ and
At

s rv—— e

when projecting from x-space to Xp-space, let di(gB) be the Euclidean distance

- —

f from Xp to the hyperplane .Z aijxj = b1 - .Z aijxj' Thus (after introducing a
I jeB jéB
& sign convention),
| w 5 2%
(6) d,x) = (b, = £8,.x)/(Ea,)", i=1,2,...m
n i =1 2y j=1 ij
1
) 4,0 =, -~ £ e )l 1al 3t 18 1,25000m
i g s [} = g&y e e ayllle
i =B i jul 11550 jeB ij




3. Review of Previous Methods

Hillier [6,5) originally proposed and tested two methods for choosing

the interior path in Phase 1. Both methods are based on the following general
(1)

approach. First, use the simplex method to obtain x'°°. Then, for each func-

(1)

tional constraint i in (2) that is binding at x (i.e., whose slack variable

),

is nonbasic for x ). replace bi by

(2)
(8) by =b, - &

for some suitably chosen scalar A, > 0. For this modification of the linear

i
programming problem (1-3), use standard post-optimality calculations to obtain

(2) 60} )

the new solution x having the same basis as x Note that x also is

feasible for the original linear programming problem (1-3) except perhaps for
(1)

Therefore, the objective

(1) (2)

some of the constraints that are not binding at x

of Phase 1 is fulfilled by letting the line segment between x and x be
the desired interior path.
Method 1 sets

1
(9 A, =5 E |a,.],
i ZjeB ij
so that every basic variable that is restricted to be integer by (4) can be
changed by as much as % (as when rounding to the nearest integer value) with-
out violating the original constraint i in (2).
Method 2 sets

1
2

1.0
(10) by = E( T a0 N,

so that

(2) 1.2
(1) d,>7) = 5%,




These methods are illustrated in Figure 1 for a problem with functional con-

straints 4x1 <5 and 2xl + 2x2 < 5, where the objective function is such that

both of these constraints are binding at 5(1).

SE5 (1)
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Figure 1. Interfor paths for previous Phase 1 methods.




(2)
i

can be rounded to the nearest integer value without violating any of the

original constraints (2-3) that are binding at é(L).

Both methods have the key property that every x such that j ¢ B

(This holds for Method

(2)

2 since the Euclidean distance between this rounded solution and x is at

I
1.2 : 4
most-EN .) Therefore, since Phase 2 begins searching for feasible solutions
by rounding solutions lying on the Phase 1 interior path, this property
guarantees that a rounded solution satisfying at least the binding constraints

(2)

will be obtained by the time x is reached (and usually much sooner). If
some such solution that also satisfies the nonbinding constraints can be
found, it will provide the desired starting feasible sclution for Phase 3.
Broadly speaking, the basic objective in choosing an interior path
ve it lead into the "middle" of the feasible region where it should
to locate a good feasible solution, and where the located feasible
Lions should provide the greatest latitude for finding improved solutions
in Phase 3. Both methods appear to meet this objective quite well. 1In fact,
it follows from (11) that the Method 2 line segment is equidistant from the

(1)

functional constraint hyperplames that are binding at x° Method 1 does
not have this property, but it does consider the additional relevant question
of just how far rounding a solution can move it toward a given hyperplane.
Thus, the Method 1 path can be thought of as equidistant from the binding
hyperplanes when the distance is measured in the direction that the maximum

possible amount of rounding can move a point toward the given hyperplane.

The next section evaluates more critically just how well these methods

actually meet this objective when it is defined more carefully.




4. Evaluation of Previous Methods

The two previous methods discussed in Section 3 both focus on extreme
cases. What is the largest possible distance that rounding can move a solu-
tion? (Method 2) What is the largest possible increase in the left-hand
side of a functional constraint that can result from rcunding?! (Method 1)

This raises the question of just how these extreme cases compare
with the actual cases that normally would be occurring on a statistical
basis. This is evaluated below, first in regard to the distances moved by
rounding, and then the changes in left-hand sides. Implications are then
explored.

To study this question statistically, assume that the parameters of
the problem (1-4) are drawn from some underlying probability distributions.
Assume, without loss of generality, that the ordering of the variables is
such that B = {1,2,...,N}. Then, for some given method of calculating the

2
4, needed to determine 5‘“) (see Section 3), let the random variable Kj be

i
the change in xgz) resulting from rounding it to the nearest integer, for
j=1,2,...,N. Under most circumstances, one would expect the fractional
(2)

parts of the xj to be dispersed rather uniformly over the unit interval.
(For certain highly structured problems with integer-valued parameters, the

X, may have discrete distributions with considerable mass at zero. Such

3

problems tend to be relatively easy to solve, however, and so are of less
interest for heuristic procedures.) Therefore, it is assumed here that

X ..,xN are independent and identically distributed according to a

1r%ps

uniform distribution ranging from -% to 4"%, so that this common distribu-

tion has the density function




-

( 1 for -% < xS %
(12) f(x) = P
(\“, otherwise.

Now let the random variable D be the Euclidean distance that 5(2)
moves due to rounding x;Z) to the nearest integer for j = 1,2,...,N, so
that

e %
(13) D= (o F X0
j=1 7

Theorem 1: As N grows large, the probability distribution of D tends to

a normal distribution with mean and variance,
L
p I e T
(14) E(D) = G3)"» Var®) = 0

Proof: Let the random variable Z have a normal distribution with mean

zero and variance one, and let

N o, E =
2T 2
¢z 3)° - G
(15) Ty = B it - . EOr K= 3,20
2
&0

Thus, letting - denote convergence of a sequence of random variables in the
sense of pointwisc¢ convergence of their cumulative distribution functions,

it is sufficient to show that

2 w7
LN Z

It is easily calculated that

Y =5
(16) E(Xj) * 33 » 180 °

Var (Xj) =




AN ARPAARL I o =

-
Therefore, by the Central Limit Theorem,
2 N
D - 17 ;s .
i D RS
1
2
(180)
Now construct a Taylor series expansion of the square root of D2
about its mean, E(D ) = L5 L
12
i 1 5
___Ij__Z lNZZN EI 2 It
(17) D= G5 #2C -) 2k @t -5
for some £ interior to the interval joining D2 and 1_2- (so £ is a function
of the value taken on by DZ). Consequently,
1
b~ (@ -8
(18) Z, = Al . - R
= N 1 20 N’
1 Ny Z
f AR
: ‘60) (180)
!
E where

2 12
¢ = 260 ) - :
(N2
- |
so i
1440(60) 2N~ 52e 0%,




Now note that

3 1
- N
N 152 i%(IE : © with probability one,
since
N 2 N
(e D
12 12
nrg 2]
(180)2 (_N_)"'z
180
implies
N
59
N + 0 with probability one.
12
Therefore,
bN >0 with probability one,
so
Zy > Ze Q.E.D.

Although Theorem 1 gives asymptotic results, these also can be used
as approximations for even small values of N.
The Central Limit Theorem usually will give a reasonably good approximation
to the normal distribution for values of N as small as four or five. Fur-

thermore, an analysis of additional terms in the above Taylor series

expansion (17) indicates that the expresssions for E(D) and Var(D) given by

Theorem 1 should be within a few percentage points of the itrue values for

10

L e i



values of N this small. This implies that Var(D) is essentially a constant

independent of N, even though E(D) essentially is growing proportionally

1
to NZ.
It is interesting to compare the range of possible values of D,
1
(19) 0<D<3N

with the range of likely wvalues suggested by Theorem 1. For example, using

the mean + nearly four standard deviations gives

1

N

1 N
cgilz Gor ¥

n

} > 0.9998.

(Y

(20) Prob {(f%

1
Thus, even though Method 2 focuses on the upper bound, D ij%Nz , for all
1
1
practical purposes one can instead assume that D < (N/12)2 +<§. Furthermore,

for fairly large values of N, the actual values taken on by D will tend to
1

be quite close to 3 > Z 58% times the upper bound used by Method 2.

i

Even more pertinently, Method 2 uses-%'N2 as an upper bound on the
distance that rounding a solution can move it toward a given functional
constraint hyperplane, and Method 1 uses a similar quantity. By contrast,
D represents the distance moved in whichever direction results from the
rounding, so the resulting decrease in the distance to the hyperplane is

likely to be much smaller than D. Therefore, a realistic statistical upper

bound on this decrease may be far smaller than the upper bounds used by

these methods.




gal oy

To study this question, let the random variable D, and D:'l

({=1,2,...,m) be the decrease in di(i) and di(lB), respectively, due to
(2)

first setting x = x and then rounding x, to the nearest integer for

J
j = 1,2,...,N. Thus

N N
z X z X,
=laiJ ] b 1=laij i
(21) Di = n-———;. ’ Di = N !-_ ’
(322 3 a2y2
j=1 =1 ™
so
1
i S
% aij
Di=CD'i, where C = l:—:L—-— » 0<C<1.
2
z ai.
j=1 ™
Theorem 2: (a) E(Di) =0, E(Di) =0
C2 1
el Y e e
(22) Var(Di) =17 Var(Di) 12
Prob (0, <k L}>1-%, Prob (D} <k =} >1 -
12 k MlZ k

for any k > 1.

d2
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(b) As N grows large, if {ail,aiz...) necessarily is a uniformly
bounded sequence such that its sum diverges, then the probability distribution
of Di and Di tends to a normal distribution with the respective means and
variances given above.

Proof: Part (a) follows immediately by direct calculation of the

moments and then Chebychev's inequality. Part (b) is a direct application

of the Lindeboerg ~,ﬂ,:‘,‘.'inionl for the Central Limic Theorem.

The condition on the aij parameters in Theorem 2b is not a particularily
restrictive one. For example, it holds if these coefficients for a given
constraint can be thought of as being independently drawn from a single under-
lying probability distribution that is bounded but not degenerate at zero.
However, the rate at which the distribution of Di and D; approaches a normal
distribution depends considerably on the dispersion of the ai,. If a very
few coefficients dominate the others in magnitude, then the normal approxima-
tion will not yet be a good one. But if there are many relatively large
coefficients of the same order of magnitude, it will be an excellent approxi-
mation.

If N ig large and the normal approximation is reasonable, then the
statistical upper bounds become very small indeed compared to the bounds
used by Methods 1 and 2. For exaumple, using the mean plus Y12 standard

deviations,

(23) ProbiDi <€} > 0.9997, Prnb{Di < k¥ 009997

[

See Feller (3, pp. 256-258].
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Note that neither bound ever exceeds one regardless of how large N is.

By contrast, Method 2 uses the upper bound,

1
Sy
(24) D, < 3N,
and Method 1 uses
N
AL
21 4
(25) B, £~ ; s
A
2z ai.)
j=1

(Observe that (24) and (25) give the same upper bound if N = n and the aij
are equal, but that (24) is larger otherwise.) Thus, these latter bounds
can be many times too large to reflect realistic possibility, and so lose
their relevance for their intended purpose.

The implication is that each A, in (8) can sometimes be made much

i
smaller in order to obtain an appropriate 5‘2), e.g., by using (23) to set
g 1
n = N ==
(26) A, =c(s aij)2 = (z aij)2
i=1 j=1
(2)

Then, if one wants to use X directly to obtain a feasible solution by

rounding (bypassing Phase 2), a far superior solution may result. Further-
more, this solution is far less likely to violate any of the constraints

(1)

(2,3) that are not binding at x than are the rounded solutions resulting

from the larger Ai in (9) and (10).

1k




However, if the full three-phase procedure is to be used, then the

real significance of A, is not the resulting 5(2), but rather the direction

(1) (2)

of the line segment leading from x toward x . That 1is, two methods

i

for setting the A, that differ by only a fixed multiplicative constant (for

p
a given problem) actually would be equivalent in this respect since the
direction would be the same. This is the case, for example, for the Ai
in (10) and the A, suggested by the statistical upper bound in (20). However,
note that the 61 in (26) are not equivalent to the Ai in either (9) or
(10), so (26) does give a new direction for the line segment.

It is enlightening to veflect on the differences between (26) and
(10). At first glance, they appear to be quite similar since, except for
(10) having the multiplicative constant given in (11), they differ only in
the limit of summation being n for (10) and N for (26). However, this minor
symbolic difference macks two major methndological differences. First, (10)
gives as much influence to the integer-restricted variables (4) that are

(1)

nonbasic at x (XY+1’XN+2""’Xn') as to those that are basic (xl,xz,...,xN),

even though these nonbasic variables are irrelevant for rounding solutions

M g <2

between x an (and play little role thereafter in Phase 2). Second,

(10) also gives as much influence to the variables that are not integer-

restricted (xn,*l,x ...,xn), even though these variables play only a

n'+2’
secondary role at best in any versions of Phase 2 developed to date. The

search for a good feasible solution in Phase 2 takes place primarily in Xp=
space (using the orthogonal projection onto this coordinate hyperplane from
the parallel hyperplane passing through the current point of interest on the
SORPRRNCY)

line segment between x ). Therefore, these differences suggest

some major drawbacks in Method 2, which is based on (10).




To illustrate these drawbacks, suppose that n = 3 for the problem | ]

with N = 2 shown in Figure 1, where the additional variable X, enters only

(2)

into the 4xl < 5 constraint as Axl +: 40x3 < 5. This changes X, " for

e

2 = =
Method 2 to Zéh) = (%-— %-W202, %-+-% Y202) = (-5.86,7.36), so that the line
segment from gél) now intersects the xz-axisslightly above Xy = %u The

result is that the essentially irrelevant variable Xq has greatly distorted
the direction of the Phase 2 search for a good feasible solution by moving i
it far away from the center of the feasible region in Xy-space.

Therefore, it appears to be more appropriate to focus on distances
in x -space, such as the D; variables considered above, rather than distances

B

in x-space. This conclusion leads to the new method presented in the next

B T
i

section.
: |
] t
S A New Method |
Based on the above analysis, it is proposed that 5(2) be obtained by
making it equidistant in Xp-space from the functional constraint hyperplanes
= that are binding at 5(1). Thus, the rationale is the same as for Method 2,

except that the di(iB) quantities in (7) now are equated rather than the
di(z) in (6). To be completely analogous to (10) and (11) for Method 2, one
would set

11
L i

P
(27) by = 50 a )W,

. jeB

16




so that

1
AR
s ) =3V

(28) di(x >

(2)

This would guarantee that xj can be rounded to the nearest integer for

every j € B and the resulting solution would still satisfy all of the con-

(1)

straints that are binding at x However, (23) indicates that (28) often

is overly conservative, since

(29) 4,2y = 1

B

can virtually provide the same guarantee (assuming the conditions of Theorem
2b hold). As already observed in Section 4, this statistical upper bound
on the Di leads to

1

2 32
(26) B o= €5 &
SR

(2)

With either (27) or (26), x still would be calculated by the procedure

described at the beginning of Section 3.
Note that (26) and (27) actually provide equivalent methods (hereafter

labeled Method 3) since, for any given problem, they differ only by the
1

fixed multiplicative constant %412 and so give the same direction for the
) to 1(2). Nevertheless, when Theorem 2b is applicable,

(2)

line segment from x

it is suggested that (26) be used, since its x provides a more realistic

estimate of the maximum amount by which the line segment should need to be

ooy

extended from x In the rare instances where rounding this 5(2)(for J e B)

violates a binding constraint, the line segment always can be extended a

qe
17




little further. However, when this rounded solution is not feasible, the
usual explanation would be that it violates one or more of the constraints
that are not binding at E‘l), so it would do no good to extend the search

further in the direction of the line segment. Therefore, failure to find

a feasible solution by this time would be a good signpost that the search

needs to be moved in another direction to take into account these relevant

————

nonbinding constraints. A procedure for doing this is described in the
next section.

Another reason for preferring (26) over (27) is its strong superiority
for the following new option for streamlining Phase 2. Begin (as usual) by

(1)

(for j € B) provides a feasible solution.

(2)

checking whether rounding x
If not, then immediately check whether rounding x (for j € B) provides
a feasible solution. Only if this fails also would Phase 2 be resumed in

the usual way. (Another possibility would be to conduct the usual Phase 2

search from both of these rounded solutions before considering any other

°
points on the line segment between 5(1) and 5(“).) The rationale is that

(1)

l if rounding x (and perhaps searching from there) fails, then identifying

a nearby feasible solution may be difficult, leading to a long Phase 2

(2)

process. By using the "tight"” x provided by (26), much time might be

saved by skipping down to where a feasible solution may be readily identi-

fied, while perhaps sacrificing little in the quality of this solution (or

of the resulting final solution yielded by Phase 3).

18




6. Extension of Methods to Piecewise Linear Interior Paths

All of the methods discussed above focus on the functional constraints
(2) and the nonnegativity constraints (3) that are binding at 5(1) (1.e.,

such that the slack variable in (21i) or the variable in (3j) is nonbasic

(1)) by requiring that rounding 5‘2) (for j € B) should satisfy these

(2)

for x
constraints. There is no requirement, however, that either x or the

corresponding rcunded solution must (with even high probability) satisfy

1)

all of the constraints (2,3) that are not binding at x If the rounded

solution does viclate any of these constraints, then it becomes possible

(but by no means certain) that Phase 2 will fail to find a feasible solution
(1) (2)

in the general region between x and x Furthermore, if any of the

variables auong x or the slack variables added to (2) are degenerate basic

. B

1)
variables at 5‘1', the line segment from x may lead immediately

out of the feasible region. Although even this may not prevent finding a

feasible solution, either complication would likely blunt the effectiveness
of the otherwise highly successful(optional) technique proposed by Hillier
[6,5] of generating multiple final solutions in Phase 3 by generating a

series of feasible solutions in which each succeeding feasible solution

corresponds to a new point further along the line segment from g(l) to

5(2). These considerations suggest that the choice of an interior path to

follow during Phase 2 preferably should be governed by the location of the
path relative to all constraints- of the problem, not only those which are

binding at 5‘1).

19




An attractive alternative choice of this kind for the interior path

is the parametric solution to the linear program,

(30) maximize T,

subject to

n
(31) ‘E aijxj + Ait £ bi’ 1 = 1....,m

j=1

n

32 Y e T = 7
(32) e
(33) xjio, g =l yn
(34) x> D,

W

as Zis decreased from its value at x Thus this extension of Methods
1, 2, and 3 (labeled 1P, 2P, and 3P, where P stands for '"Parametric') would
use their respective definitions of Ai’ namely, (9), (10), and (26) (or (27)).
Because of the properties of parametric linear programming, the resulting
path for each method is continuous and piecewise linear, leading from 5‘1)
into the interior of the feasible region for the continuous version of the
original problem (1-3).

Since there no longer is a fixed set of variables (corresponding to
B) that need rounding along such a path, one could adjust the Ai each time

this set changes by redefining B and N in terms of the current basis instead

of 5(1). This is not recommended, since it would considerably complicate

20




the computations, introduce discontinuities into the path, and perhaps
create chain reactions of changes. However, the price being paid for

fixing the A, should be recognized. Since the current values of such re-

i

defined B and N may indeed change with each new basis in the parametric

solution, the original rationale for choosing the fixed A, may no longer

i
be completely applicable. Fortunately, this doesn't really affect Method

2P, since its Ai (10) is uninfluenced by B and N except for the same

1
multiplicative factor N2 for all i, which only changes the scale of r.
However, B does play significant role in (9) (Method 1P) and in (26)

(Method 3P). The relative amount by which changes in B would change these

Ai depends greatly on the size of N and the dispersion of the aij' With
N large, and with aij of comparable magnitude for different j € B, any
deviations between the A, for the '"current'" B and the fixed A, at 5(1)

il i

should be of little consequence-

If N is not large, or if a few a,, dominate the others in magnitude,

ij
then it is recommended that the integer-restricted variables (4) that are

D be fixed at zero in (30-34) for Methods 1P and 3P. This

nonbasic at x
would ensure that the original rationale for (9) and (26) would continue to
hold (conservatively) along the entire path, since it would restrict the

rounding of x to just Xge The drawback is that it decreases the flexibility

in choosing an appropriate interior path in x-space.

It should be noted that Ibaraki et al [7] first proposed this approach

for generating a piecewise linear interior path in the context of Method 2.

(However, they also acknowledge [7,p.134] the independent development of this

approach by the present authors.)



The piecewise linear interior path generated by each of these three

methods follows a "most interior'" route into the feasible region for (1-3)

in the sense that, for every value of Z, the corresponding point along the
route maximizes the miniwum Euclidean distance to the boundary hyperplanes

for the functional constraints (2), when this distance is measured in the
appropriate way. For Method 1P, the distance to the hyperplane for constraint
i should be measured from the point in the direction of the n-vector d such
that dj =+]1 if j € B and aij >0, d, =-14if j ¢ B and a

] j

otherwise. For Method 2P, the distance is measured in the usual way per-

< 0, and di =0

pendicularly to the hyperplane, as in (6). For Method 3P, it is done in the
same way as for 2P except in Xg-space rather than x-space, as given by (7).
Thus, for Methods 2P and 3P, the point along the route for a given value of

Z is the center of the largest sphere which may be inscribed within the
functional constraints in the appropriate space, subject to the side condi-
tions that the center must be nonnegative and lie on the hyperplane (32).
When Method 3P uses (26), the radius of the sphere in §£—spacc is the optimal

value of r defined by Z. This also would be the radius in x-space for Method

el

2P if the unnecessary multiplicative factor,-%N , were eliminated from (10).

The paths for Methods 2P and 3P are also motivated by the observation
1

S s : 3 ¢ 2
that every sphere in Euclidean N-space of radius r i-%N contains at least
one lattice point, namely, the point which results from rounding the center
of the sphere. (N here should be interpreted as the current number of vari-

ables that need rounding.)
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Suppose r* is the radius of the largest sphere with nonnegative
center which may be inscribed within the functional constraints in x-space.

The center of the sphere x* lies along the Method 2P interior path. Fur-

ro

thermore, if r* i'%(“') , the heuristic procedure is guaranteed to find
a feasible solution by proceeding along this interior path, since at worst,
it will round x* to find a feasible integer solution. These same remarks

also apply to Method 3P in x -space, with n' replaced by N (as defined in

B

Section 2), if the integer-restriced variables (4) that are nonbasic at

5(1) have been fixed at zero in (30-34). Furthermcre, when the conditions

of Theorem 2b hold, (Z3) indicates that r* > C (for Method 2P) or r* > 1

(for Method 3P) usually would be sufficient to find a feasible solution.
Another interesting property of the path generated by Method

iP(i = 1,2,3) is that, barring degeneracy, its first segment leading away

(1)

from x lies along the Method i line segment. The straightforward proof
of this statement follows from the correspondence between the optimal basis
to problem (1-3) and the initial basis in the parametric problem (30-34).
This initial basis to (30-34) will have as basic variables r and all
variables basic at 5(1). As Z is decreased, this basis remains optimal

until one of the basic variables is driven to zero at some critical value

of Z. At this point the basis changes and the interior path diverges

from the corresponding Method i line segment.




7. Another Extension to Piecewise Linear I[nterior Paths

The above approach to generating pilecewise linear interior paths
does require a software package that includes parametric programming, as
well as the considerable execution time involved. TIf this is not convenient,
ther the following is a simpler and quicker approach that only requires the
basic simplex method needed to obtain 5(1) anyway.

First, apply the simplex method to solve the following variation of

(]-"3) s

(35) maximize r,

subject to

n
(36) R 3 4% +A,r < by, 1= 1,2, 0wl
j=1
(37) B 0, 2 B I RN,
1.

starting with the initial solution x Record the sequence of basic
feasible solutions generated in the process of doing this, and then connect
each successive pair of these solutions (in x-space) by a line segment. This
is the desired piecewise linear path.

As before, this extension of Methods 1, 2, and 3 (labeled 1S, 2S, and
35S, where S stands for "Simplex'") would use their respective definitions of
Ai’ namely, (9), (10), and (26) (or (27)).

Although the path generated by Method iS (i = 1,2,3) leads to the same

"most interior' point (according to the respective distance norms described
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in Section 6) as for Method iP, it does not follow a "most interior" route
in the same sense. However, it does provide an alternate route to this

"most interior" point which never lecaves the feasible region for (1-3).

8. Computational Experience

In order to evaluate and compare these techniques, several FORTRAN
codes were developed for a CDC-0400 system. Since Phase 1 of the heuristic

algoriihm developed by Ibaraki et al [7] is based on Method 2 (and since

AL U o b e i EF Ve

programming services were no longer available when Method 3 was developed),

the focus was on testing variations of Method 2 (2, 2P, and 2S), although

Method 1 (without extension) also was run on the problems.

A total of 64 test problems were used. 22 of these are standard
test problems in the literature - Haldi's IBM problems (#1-5,9) and Fixed |
Charge problems (all 10), and Woolsey's 4-point and 5-point combinatorial
problems (all 18 are reproduced by Trauth and Woolsey [15]), plus two
problems (#4,5) given by Petersen [9] and two (#8,9) given by Thompson [13].
The other 42 are randomly generated problems that were previously used by
the authors. These consist of the Type I problems (#1-8, and ''Large"

30 x 60, 60 x 30, 60 x 60), Type II problems (#1-16), and Type ILI problems

(#2-5,8) discussed in [6], as well as the Type V problems (#1-10) discussed

in [2]. Of particular interest are the type I and II problems, whose aij

parameters are randomly generated integers from the intervals, [-40,59]] and
[0,99], respectively, and whose variables are gencral integer variables (as

opposed to binary variables). All 64 problems were treated as pure integer
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programs, so n' = n.

Since the relevant consideration in evaluating Phase 1 methods is
the resulting effectiveness of the overall heuristic procedure, these methods
were applied to the test problems in conjunction with fixed Phases 2 and 3.
These latter phases used Methods 3A and 1 respectively, according to the
labels described in [6]. (The one minor exception is that Method 2A for
Phase 2 was used in conjunction with Method 1 of Phase 1.) Phase 2 also
used the device discussed in both [6] and [5] (and labeled R3A in [5]) of
generating multiple feasible solutions for Phase 3. (This involves re-
peating the Phase 2 search all along the interior path generated by Phase
1, and so provides a better test of this path.) A maximum of 20 feasible
solutions (excluding any obtained directly from 5(1)) were allowed from
Phase 2, where these solutions need not be distinct. The algorithm pro-
ceeded to Phase 3 with each new Phase 2 solution only if that solution
differs from the immediately preceding ones and this was allowed at most 10
times.

Procedures 2-R3A-1, 2P-R3A-1, and 1-R2A-1 were applied to all 64 test
problems. For 47 of these problems, they all found their best solution from

1) so that the

the Phase 2 feasible solution generated directly from x
interior path generated by Phase 1 was irrelevant in these cases. For the
other 17 test problems, the results regarding the best final solution (including
the point in the algorithm at which this solution was found) are shown in

Table 1 for Procedures 2-R3A-1 and 2P-R3A-1. (Procedure 1-R2A-1 is excluded

from the table since a detailed comparison with Procedure 2-R2A-1 already is
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given in Table III of [6] for most of these same problems.) Procedure

2S-R3A-1 was applied to 7 of these 17 problems, as also shown in Table I.
Ibaraki et al [7] also applied their heuristic algorithm to 9 of
these 64 test problems, with the comparacive results shown in Table II
(Thompson = T, Fixed Charge = ¥C). Times are given for applying the
simplex method to find 5‘1) (labeled LP), and then for the total of this
and all three phases of the heuristic procedure per se. However, it
should be noted that they used a different computer, a FACOM 230/60,
which they indicate corresponds very roughly to the IBM 360/65 and the
UNIVAC 1108. Furthermore, although they also generated multiple solutions
on these problems (except for FC-7 and FC-10), they only allowed four
distinct feasible solutions from Phase 2 and only used the two best of

these for Phase 3.
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9. Conclusions

Under some circumstances, Methoa 1 and (particularly) Method 2 for
Phase 1 can yield an exceedingly conservative 5(2). More seriously, Method
2 gives undue weight to largely irrelevant variables, and so can distort
the resulting direction of the line segment fromlg(l). Statistical
analysis suggests a promising new Method 3 which avoids these shortcomings.

All of these methods focus only on the functional constraints that

(l). Although this usually should be adequate, there are

are binding at x
situations where other constraints should influence the interior path.

The P (Section 6) and S (Section 7) extensions to piecewise linear interior
paths provide this capability. Furthermore, the P extension starts off on
the line segment for the original method (barring degeneracy), and so should

provide a comparable performance on ordinary problems as well. The S exten-

sion may be more convenient, but its other properties are less certain.

On the 64 test problems, the P extension led to a different best
solution from the original method on only four of them (better on two,
slightly worse on two), so it certainly doesn't provide a dramatic improve-
ment. However, it is only designed to help on those occasional problems
where additional constraints should be considered, without hurting on others,
and it does seem to meet this objective. Furthermore, it should increase
the reliability of heuristic procedures in finding any feasible solution on
problems where this is very difficult. Since the price for adding this ex-
tension is a modest one, it should prove to be a worthwhile addition for at

least full-fledged production codes.
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On the other hand, the S extension often gives a different best
solution (frequently worse but sometimes better) from either the P exten-
sion or the original method. [t apparently tends to start off the interior

path in a much different direction. Therefore, its main usefulness may be

as a supplementary method to obtain additional! final solutions to try to
improve upon the original best solution from another method.

Computational comparisons of the heuristic procedures tested here
with the one proposed by Ibaraki et al [7] suggest that they have similar
performance capabilities.

The reader is referred to [5] for an extensive comparison of Methods
1 and 2 (without extension), as well 25 some new options for all three phases

and comprehensive experimental results on various versions of these heuristic

procedures.
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